Properties

Label 6.6.703493.1-41.4-b1
Base field 6.6.703493.1
Conductor norm \( 41 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field 6.6.703493.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 5 x^{4} + 11 x^{3} + 2 x^{2} - 9 x + 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -9, 2, 11, -5, -2, 1]))
 
Copy content gp:K = nfinit(Polrev([1, -9, 2, 11, -5, -2, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -9, 2, 11, -5, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{5}-2a^{4}-11a^{3}+10a^{2}+9a-4\right){x}{y}+\left(3a^{5}-2a^{4}-17a^{3}+10a^{2}+17a-2\right){y}={x}^{3}+\left(-a^{5}+a^{4}+5a^{3}-4a^{2}-3a-1\right){x}^{2}+\left(-6a^{5}+5a^{4}+34a^{3}-23a^{2}-33a+4\right){x}-6a^{5}+3a^{4}+36a^{3}-15a^{2}-43a+5\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([-4,9,10,-11,-2,2]),K([-1,-3,-4,5,1,-1]),K([-2,17,10,-17,-2,3]),K([4,-33,-23,34,5,-6]),K([5,-43,-15,36,3,-6])])
 
Copy content gp:E = ellinit([Polrev([-4,9,10,-11,-2,2]),Polrev([-1,-3,-4,5,1,-1]),Polrev([-2,17,10,-17,-2,3]),Polrev([4,-33,-23,34,5,-6]),Polrev([5,-43,-15,36,3,-6])], K);
 
Copy content magma:E := EllipticCurve([K![-4,9,10,-11,-2,2],K![-1,-3,-4,5,1,-1],K![-2,17,10,-17,-2,3],K![4,-33,-23,34,5,-6],K![5,-43,-15,36,3,-6]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-2 a^{5} + a^{4} + 12 a^{3} - 5 a^{2} - 13 a + 2 : -a^{5} + a^{4} + 5 a^{3} - 5 a^{2} - 3 a + 1 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((a^5-a^4-6a^3+4a^2+7a+1)\) = \((a^5-a^4-6a^3+4a^2+7a+1)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 41 \) = \(41\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $3a^5-a^4-18a^3+4a^2+20a+1$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((3a^5-a^4-18a^3+4a^2+20a+1)\) = \((a^5-a^4-6a^3+4a^2+7a+1)\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 41 \) = \(41\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{132422900}{41} a^{5} - \frac{141704392}{41} a^{4} - \frac{798145247}{41} a^{3} + \frac{689842493}{41} a^{2} + \frac{906291495}{41} a - \frac{237335216}{41} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 4678.2549883205107538344904865863164387 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.39442 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}1.394420000 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 4678.254988 \cdot 1 \cdot 1 } { {2^2 \cdot 838.744896} } \\ & \approx 1.394421299 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a^5-a^4-6a^3+4a^2+7a+1)\) \(41\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 41.4-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.